MLbase: A Distributed Machine-learning System

نویسندگان

  • Tim Kraska
  • Ameet Talwalkar
  • John C. Duchi
  • Rean Griffith
  • Michael J. Franklin
  • Michael I. Jordan
چکیده

Machine learning (ML) and statistical techniques are key to transforming big data into actionable knowledge. In spite of the modern primacy of data, the complexity of existing ML algorithms is often overwhelming—many users do not understand the trade-offs and challenges of parameterizing and choosing between different learning techniques. Furthermore, existing scalable systems that support machine learning are typically not accessible to ML researchers without a strong background in distributed systems and low-level primitives. In this work, we present our vision for MLbase, a novel system harnessing the power of machine learning for both end-users and ML researchers. MLbase provides (1) a simple declarative way to specify ML tasks, (2) a novel optimizer to select and dynamically adapt the choice of learning algorithm, (3) a set of high-level operators to enable ML researchers to scalably implement a wide range of ML methods without deep systems knowledge, and (4) a new run-time optimized for the data-access patterns of these high-level operators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Warming: New Frontier of Research Deep Learning- Age of Distributed Green Smart Microgrid

The exponential increase in carbon-dioxide resulting Global Warming would make the planet earth to become inhabitable in many parts of the world with ensuing mass starvation. The rise of digital technology all over the world fundamentally have changed the lives of humans. The emerging technology of the Internet of Things, IoT, machine learning, data mining, biotechnology, biometric, and deep le...

متن کامل

Comparative Analysis of Machine Learning Algorithms with Optimization Purposes

The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches‎. ‎Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data‎. ‎In this paper‎, ‎a methodology has been employed to opt...

متن کامل

A Hybrid Machine Learning Method for Intrusion Detection

Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...

متن کامل

Machine learning algorithms in air quality modeling

Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...

متن کامل

Real-time Scheduling of a Flexible Manufacturing System using a Two-phase Machine Learning Algorithm

The static and analytic scheduling approach is very difficult to follow and is not always applicable in real-time. Most of the scheduling algorithms are designed to be established in offline environment. However, we are challenged with three characteristics in real cases: First, problem data of jobs are not known in advance. Second, most of the shop’s parameters tend to be stochastic. Third, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013